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Abstract—In this paper, a Nonlinear Model Predictive Con-
trol (NMPC) is designed using a data-based model of Proton
Exchange Membrane Fuel cell (PEMFC) for output voltage con-
trol. To capture PEMFC complex dynamics and non-linearities,
Machine Learning (ML) algorithms are utilized to model the
behavior of the system. This model is then embedded inside the
NMPC controller to provide the predictions required for solving
the optimization problem. The NMPC not only provides precise
output voltage tracking, but also can simultaneously reduce the
fuel consumption of the stack as one additional term in the
cost function. Moreover, the possible upper and lower bounds
of the control effort generated by actuators are set as the hard
constraints of NMPC. The simulation results show that while
these constraints are not violated, the desired output voltage is
generated with less fuel being consumed comparing to the case
that fuel consumption is not controlled.

Index Terms—Machine Learning Control, Proton-exchange
membrane fuel cell, Minimizing fuel consumption, Model Pre-
dictive Control

I. INTRODUCTION

In the recent decades, the need for a clean alternative for
fossil fuels has motivated investing on renewable and carbon-
free solutions. Accordingly, the Fuel Cell (FC) technology has
proven to be one of the promising ways for producing power
with less harmful environmental effects than the fossil fuels
[1]. The FC technology comes in different types and designs
that consume a variety of fuels including hydrogen, methane,
ethanol, and methanol [2].

Among all types of fuel cells, Proton Exchange Membrane
Fuel Cell (PEMFC) has demonstrated the highest power to
volume ratio. Therefore, PEMFCs have been used in vari-
ous stationary and mobile applications ranging from residen-
tial power generation to Fuel Cell Hybrid Electric Vehicles
(FCHEV). Fig.1 shows a simple illustration of the PEMFC
structure. PEMFC requires highly pure hydrogen as fuel. First,
the hydrogen molecules are ionized at the anode. Then the
hydrogen atoms travel through the proton-exchange membrane
to the cathode side where they react with the oxygen molecules
and produce water. Anode and cathode are connected with
an external circuit for conducting the electrons by which the

produced electric power is exploited. The chemical reactions
inside PEMFC are described in Eq. (1) [3].

Anode: H2 ⇒ 2H+ + 2e−

Cathode: O2 + 4H+ + 4e− ⇒ 2H2O

Overall reaction: H2 + 1/2O2 ⇒ H2O

(1)

Fig. 1: Schematic of PEMFC operation

Typically, the output voltage of a single cell is not adequate
for practical usage. Thus, many cells are connected together in
parallel and series to form one fuel cell stack. The generated
power of the stack is the first variable of interest which is
mainly controlled by the fuel and air flow rates. Depending
on the application of PEMFC, the output voltage is required to
follow different patterns from a constant reference with focus
on disturbance rejection to tracking fast voltage demands.

There have been significant research efforts regarding the
control of PEMFC. Methekar et al. [4] designed a centralized
Multiple-Input Multiple-Output (MIMO) controller for con-



trolling average output power and temperature by manipulating
hydrogen and coolant flow rates. The oxygen flow rate is in a
constant ratio with respect to the hydrogen flow that prevents
the oxygen starvation. Pukrushpan et al. [5] followed the
same approach to control fuel utilization and the temperature
measured at catalyst using fuel flow and air flow. Gabin et al.
[6] utilized single-input single-output (SISO) Sliding Mode
Control (SMC) to prevent oxygen starvation by manipulating
the input oxygen. In [7], Chatrattanawet et al. proposed a
Model Predictive Control (MPC) to control the cell voltage
and cell temperature using the flow rates of input hydrogen
and air. Bordons et al. [8] also implemented MPC controller
using a nonlinear model of PEMFC and prevented oxygen
starvation with air flow control.

MPC is one of the effective methods for controlling PEMFC
as it enables having an optimal solution for controlling all the
desired variables by keeping the future behavior of the system
in consideration. Furthermore, system and operational con-
straints can be introduced to the controller to avoid violating
them as the PEMFC operates [9]. Nevertheless, the MPC re-
quires a model of the system to solve the optimization problem
over a prediction horizon. The PEMFC dynamic equations are
highly nonlinear with several input and output variables that
makes the control-oriented model computationally expensive.
Hence, by using a data-driven model as the prediction model
inside the NMPC, the computational cost will be mitigated
substantially [10]. Therefore, machine learning methods are
proposed as a solution for modeling the non-linear system
of PEMFC based on input and output data. This model
will be embedded in the MPC controller to provide required
predictions of the system. To the best of authors’ knowledge,
this is the first study undertaken to use a data-driven model
inside the NMPC to predict the output voltage of PEMFC.

The rest of the paper is organized as follows. Section
II introduces the fundamental physics and specifications of
the PEMFC system. Section III provides the details about
collecting data from the system and designing a model using
ML algorithms. In section IV, the designed model is used
inside the MPC while the cost function and parameters of the
MPC are mentioned. Finally, the results are reported in section
V and section VI concludes the outcomes of the paper.

II. PEM FUEL CELL PLANT MODELING

In this section, cardinal dynamic equations of PEMFC are
proposed based on Nernst dynamic method [11]. After deriv-
ing the dynamic equations of the fuel-cell stack, the detailed
Simulink model of a 6 kW stationary fuel-cell system will be
designed including a 100 V-dc power generating circuit. The
equation of fuel cell output voltage with associated losses at
any time instance can be defined as: [11] [11]

Vcell = Efc − Vact − Vohm − Vconc (2)

Where Vact indicates the activation voltage loss due to
slowness of the chemical reactions on electrode surfaces, Vohm

is the ohmic loss caused by internal resistance of the fuel cell
stack, Vconc shows the losses due to changes in concentration

of reactants as the fuel is being used, and Efc indicates the
open loop circuit voltage of the system. Open loop voltage
of the system can be calculated based on the Nernst dynamic
equation as below [9]:

Efc =

1.229 + (T − 298)−44.43
zF + RT

zF ln(PH2P
1
2
O2

) T ≤ 100◦C

1.229 + (T − 298)−44.43
zF + RT

zF ln(
PH2

P
1
2
O2

PH2O
) T > 100◦C

(3)

Where T is the stack working temperature, z indicates the
number of moving electrons, F shows the Faraday’s constant,
and R is the global gas constant. PH2 , PO2 , and PH2O indicate
the equivalent pressure of hydrogen, oxygen, and water on
the electrode surfaces, respectively. The values of constant
parameters are provided in Table I. The activation drops which
is obtained from the TOFEL equation can be expressed as [12]:

Vact = 0.9514− 3.12× 10−3 T − 7.4× 10−5 TO2

+ 1.87× 10−4 T ln I
(4)

Where I is the instantaneous current density in milli-ampere
per square centimeter, and CO2

is the oxygen concentration
on the electrode surface which is calculated as a function of
cell temperature [11]:

VO2
=

PO2

5.08× 106 exp(−498
T )

(5)

Under low current densities, the stack losses can be repre-
sented by linear terms and can be described as ohmic loss
[12]:

Vohm = I (RM +RC) (6)

RM =
ρM l

A
(7)

ρM =
181.6[1 + 0.03 I

A + 0.062( T
303 )

2( IA )
2.5]

[Ψ− 0.634− 3 I
A ] exp[4.18(

T−303
T )]

(8)

In which RC is the contact resistance to electron flow, and
RM is the resistance to proton transfer through the membrane
which can be calculated from Eq. (7). ρM is the membrane
specific resistivity and l is the membrane thickness. Ψ repre-
sents the specific coefficient based on the fuel cell membrane
type, and A is the membrane active area. The constant value
of mentioned parameters and their units are shown in Table
1. Under higher current densities, due to the limitation of
mass transportation through the membrane, the cell potential
is decreased considerably and can be described as [12]:

Vconc = −B ln(1− I

Imax
) (9)

Where B is a constant depending on the type of fuel cell,
and Imax is the maximum electrical current passing through
the fuel-cell stack in ampere. To estimate the pressure of
hydrogen, oxygen, and water vapor on anode and cathode
surfaces for replacing in Eq. (4), the expressions below can



be considered [9]:

PH2 = (1− UfH2
)xPfuel

PH2O = (w + 2yUfO2
)Pair

PO2 = (1− UfO2
)yPair

(10)

Where x is the percentage of hydrogen in the fuel, y is the
percentage of oxygen in the oxidant, and w is the percentage of
water vapor in the oxidant. Pfuel indicates the absolute supply
pressure of fuel in atmosphere, and Pair is the absolute supply
pressure of air in atmosphere. UfH2

and UfO2
are the rates of

conversion or utilization of hydrogen and oxygen, respectively
and can be calculated as: [13] [9]

UfH2
=

60000 R T N I

z F Pfuel Vfuel x%

UfO2
=

60000 R T N I

z F Pair Vair y%

(11)

Where N is the total number of cells.Vfuel and Vair indicate
the flow rates of fuel and air in liter per minute. Moreover,
the constant number of 60,000 in the numerator of Eq. (11) is
used to convert liter per minute to cubic meter per second.

For implementing a model of the fuel-cell stack based on the
dynamic equations which are represented so far, MATLAB hy-
drogen fuel-cell stack in the Simscape environment is adapted.
All the stack design parameters are set based on NetStack-PS6
real model which are reported in Table I. The nominal Fuel
Cell Stack voltage is 45V-dc and the nominal power is 6 kW
[13]. To supply the required voltage of the fuel cell, a converter
is loaded by a resistor–inductor circuit of 6 kW with a time
constant of one second. Resistance and inductance quantities
are set as 1.66 Ω and 1.66 H, respectively.

TABLE I: Fuel cell design parameters based on NetStack-PS6
real model [9]

Parameter Symbol Quantity
Faraday constant (C/mol) F 96.485

Global gas constant (mol/k) R 8.314
Maximum current (A) Imax 225
Contact resistance Ω Rc 0.07833

Membrane thickness (cm) l 175× 10−4

Specific coefficient ψ 23
Membrane active area cm2 A 50.6
Stack nominal voltage (V) Vnom 45

Boltzmann constant B 0.016
Fuel composition (%) x 99.95

Oxidant composition (%) y 21
Water composition (%) w 1

Air supply pressure (bar) Pair 1
Total number of cells N 65

Nominal stack efficiency (%) ηnom 0.55
Stack nominal current (A) Inom 133.3

The output power and voltage of one stack containing 65
cells can be calculated as follows [11]:

Vstack = Vcell N
Pstack = Vstack I

(12)

By varying the instantaneous stack current from 0 to 225
A, the characteristic curves of the 6 kW fuel cell are obtained
as shown in Fig. 2. According to the stack nominal voltage
and current which are 45 V and 133.3 A respectively, the total
number of cells and the nominal air-flow-rate (Vair(nom)) can
be obtained as below [9]:

N =
2 F Vnom

241.83× 103 ηnom
= 65 (13)

Vair(nom) =
Inom Vair(max)

Imax
= 297

lit

min
(14)

Where Vair(max) is the maximum stack air-flow-rate which is
considered as 500 liter per minutes, specifically for NetStack-
PS6 real model [9]:.

0 50 100 150 200 250

Current (A)

35

40

45

50

55

60

65

V
o
lt
a
g
e
 (

V
)

Stack voltage vs current

0 50 100 150 200 250

Current (A)

0

2

4

6

8

10

P
o
w

e
r 

(k
W

)

Stack power vs current

Fig. 2: Fuel Cell Stack characteristic curves

III. NEURAL NETWORK DATA-DRIVEN MODELS

As it can be seen in previous section, the physical equations
describing the behavior of the PEMFC are complicated and
include many approximations for simplification. Using these
equations inside NMPC for the PEFC model is computation-
ally expensive and even inaccurate in some cases, hence the
data-based algorithms for modeling the PEMFC are introduced
as an alternative approach. This section introduces the process
of collecting a proper data from the system and designing the
data-driven models based on them.

A. Data collection

The machine learning algorithms rely on the input and
output data of the system for modeling which represents a
regression problem. This dataset should be comprehensive and
be able to describe all the dynamics and working conditions of
the system with sufficient resolution. Thus, the system should
be excited properly when the training dataset is being collected
from the system. The Pseudo-Random Sequence (PRS) signal
is a natural candidate for this process as it behaves similar to
white noise that contains all frequencies monotonically which



makes it capable of exciting all the dynamics of the system
[1]. Three inputs are applied including fuel flow rate, air flow
rate, and fuel supply pressure. The two desired outputs are
the stack voltage and fuel consumption. The input values are
changed between the following ranges:

35 lpm ≤ Vfuel ≤ 85 lpm

300 lpm ≤ Vair ≤ 500 lpm

1.2 bar ≤ Pfuel ≤ 3 bar

(15)

Fig. 3 shows the recorded inputs and outputs of the PEMFC.
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Fig. 3: PEMFC input and output data

This data set is then pre-processed in which the samples
indicating the PEMFC shut-off modes are removed as only
the steady state working condition is studied in this work.

B. PEMFC modeling

In order to obtain a regression model that maps the inputs
to outputs with acceptable accuracy, different Neural Network
(NN) architectures are utilized. These include shallow and
deep Artificial Neural Networks (ANN) with and without feed-
back from the previous instances of outputs. In addition, the
Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), and Gated Recurrent Unit (GRU) are selected for
modeling since their architectures consider the dependencies
between samples over time and can capture the dynamics
of the system. Table II shows the Root-Mean-Squared Error
(RMSE) of the stack voltage test data after these networks
are trained with the best configuration in terms of the number
of layers, neurons and activation functions. Based on these
results, although all the approaches are able to model the data,
the LSTM network offers the best performance with lowest
possible RMSE.

TABLE II: RMSE of the trained models for predicting the
stack voltage

Network architecture RMSE
ANN without feedback 0.0588

ANN with feedback 0.0557
RNN 0.0523

LSTM 0.0506
GRU 0.0513

The LSTM network is one of common structures used for
predicting time-series data. It allows capturing both short-
term and long-term dependencies among samples. The selected
configuration for the LSTM network consists of three layers,
one fully-connected layer with 10 neurons and one LSTM
layer with 5 cells and one output layer with two neurons.
The prediction results of these two networks are shown in
Fig. 4. Each LSTM neuron has two feedbacks, one from the
short-term and the other one from the long-term memory. As
a result, the total number of controlling states will be equal
to 12 including 10 interior recurrent feedbacks plus 2 outputs
of the system which are the fuel-cell voltage and hydrogen
consumption.
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Fig. 4: Prediction results of the LSTM model for predicting:
(a) Stack output voltage, (b) Stack fuel consumption rate

IV. NMPC BASED ON LSTM PREDICTION MODEL

Here, an NMPC is designed using the LSTM model from
section III. The cost function for this system is derived in a
quadratic form which ends up to a convex and smooth solution
based on the system constraints [14]. The generated quadratic



cost function which is applied to the NMPC can be expressed
as Eq. (16).

J(zk) = Σ
Np

i=0{W1[Vref (k + i|k)− Vstack(k + i|k)]}2

+Σ
Np

i=0{W2[H2Consumption(k + i|k)]}2

+Σ
Np−1
i=0 {W3[Vfuel(k + i|k)]}2

+Σ
Np−1
i=0 {W4[Vair(k + i|k)]}2

+Σ
Np−1
i=0 {W5[Pfuel(k + i|k)]}2

+Σ
Np−1
i=0 {W6[Vfuel(k + i|k)− Vfuel(k + i− 1|k)]}2

+Σ
Np−1
i=0 {W7[Vair(k + i|k)− Vair(k + i− 1|k)]}2

+Σ
Np−1
i=0 {W8[Pfuel(k + i|k)− Pfuel(k + i− 1|k)]}2

+pϵϵ
2
k

(16)

In Eq. (16), the first term indicates the difference between
the desired and actual values of the output voltage. The
seconds term aims to minimize the amount of Hydrogen
consumption as the fuel. The third, fourth, and fifth terms
show the three inputs penalty costs which are fuel-flow-rate,
air-flow-rate, and fuel supply pressure, respectively. The sixth,
seventh, and eighth terms indicate the penalty costs related to
the manipulated inputs move suppression, and the last term
shows the violation effect of setting hard constraints on either
inputs or output variables of the system. The prediction and
controlling horizons of MPC are 20 seconds and 2 seconds,
respectively. The sequential Quadratic Programming (SQP)
was selected as the solver with the iteration number of 5000.
Applied weights and constraints are as Eq. (17) and Eq. (18).

Input weights: [w3, w4, w5] = [1 0.1 10]

Output weights: [w1, w2] = [500 10]

Inputs move suppression weights: [w6, w7, w8] = [1 1 1]
(17)

60 lpm ≤ Vfuel ≤ 85 lpm

275 lpm ≤ Vair ≤ 500 lpm

1.2 bar ≤ Pfuel ≤ 3 bar

50 V ≤ Vstack ≤ 59 V

16.1 lpm ≤ H2Consumption ≤ 58 lpm

(18)

Based on the real NetStack-PS6 PEMFC model specifica-
tions [8], the fuel consumption variation range was determined
as Eq. (18). To guarantee that the stack fuel consumption
rate is not violated from the defined range, it was set as a
hard constraint on the model. In this way, not only the fuel
consumption is minimized based on the tracking reference, but
also it will not exceed the selected limits at all.

V. RESULTS AND DISCUSSIONS

For this part, by placing the LSTM prediction model inside
the NMPC, the results for both step sequence and sinusoid
voltage references are depicted in Fig. 5 and Fig. 6. The step
sequence signal offers a typical reference tracking problem for
PEMFC. The sinusoid reference is also studied as it contains
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Fig. 5: Results with hard constraints and step reference. (a)
Stack voltage tracking, (b) Reduced fuel consumption, (c)
Normalized input signals, (d) Cost function



all continuous values in the valid range of output voltage
and provides a second framework for validating the designed
controllers.

It can be seen in Fig. 5a that a desirable voltage tracking has
been achieved while the fuel consumption is being minimized
in Fig. 5b. The total hydrogen fuel consumption of the
system is 27.65 liters in this simulation. Based on Fig 5c, the
manipulated variables are confined within the hard constraints
and Fig. 5d shows the logarithm of the cost function value.

The similar procedure was repeated with sinusoid reference
and the same results are recorded for this reference type as the
step sequence reference which are shown in Fig. 6. Since this
function is smoother comparing to the step sequence reference
and has no abrupt changes, the output voltage in Fig. 6a
follows the desired values more accurately. The total hydrogen
consumption for the sinusoid reference is 35.70 liters during
the a 52 seconds simulation as shown in 6b. The confined
normalized control efforts and the cost function are depicted
in Fig. 6c and 6d, respectively.

The results for these two simulation are summarized in
Table III. The first two rows show the results for a linear
MPC designed using an Auto-Regressive Exogenous (ARX)
as the prediction model. Because of the non-linearity of the
system, the ARX is not able to model the output voltage
of the system properly. Hence, the voltage tracking error of
this approach is too high that cannot be acceptable. How-
ever, the lower run time of this simple method comparing
to other cases where the LSTM-NMPC is used shows the
high computational cost of the proposed method due to the
LSTM predictions. On the other hand, the RMSE of voltage
tracking for LSTM-NMPC is considerably low which shows
the efficiency of this method. The next two rows represent the
case in which the fuel consumption is not controlled for the
step sequence and sinusoid references. Comparing the total
fuel consumption with the final two rows that a penalty to
the amount of consumed fuel is added shows a 2.54 and 2.21
liters reduction in the total fuel consumption for the two types
of references during a simulation of 52 seconds. This shows
the effectiveness of considering the associated term in the cost
function. The PEMFC studied in this paper can be classified
as a secondary (urgent) power source based on the rated power
which is 6 kW [9]. The average operating time of an urgent
power plant is far longer than 52 seconds and the calculated
fuel consumption reduction over 52 seconds can be extended
to the longer time periods, leading to a considerable reduction
in total fuel consumption.

VI. CONCLUSIONS

In this paper, machine learning model predictive control
(ML-MPC) is used to adjust the fuel-cell output voltage and
reduce hydrogen consumption using fuel flow rate, air flow
rate, and fuel supply pressure as the controlling inputs. In
this control approach, an LSTM network is trained to capture
the behavior of a 6 kW fuel-cell system including a 100V-
dc power generating circuit. The obtained data-driven model
is then placed inside the MPC controller as the prediction
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Fig. 6: Results with hard constraints and sinusoid reference
tracking. (a) Stack voltage tracking, (b) Reduced fuel con-
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TABLE III: Results of the designed controllers

Case study RMSE (volt) Fuel consumption (L) Run time (s)
Linear MPC with step voltage reference 1.34 29.44 7.3
Linear MPC with sinusoid voltage reference 1.74 31.93 8.3
LSTM-NMPC with step voltage reference without fuel
consumption minimization 0.1259 30.19 388.24

LSTM-NMPC with sinusoid voltage reference without
fuel consumption minimization 0.2328 30.14 469.46

LSTM-NMPC with step voltage reference with fuel
consumption minimization 0.1036 27.65 353.45

LSTM-NMPC with sinusoid voltage reference with fuel
consumption minimization 0.0645 27.93 439.35

model instead of using highly nonlinear control oriented state
equations of the system. The results show that the voltage
tracking task as well as the fuel consumption reduction are
being accomplished properly. In addition, the hard constraints
are not violated during the simulation. Overall, this study
demonstrates that combining ML modeling methods with
MPC is a promising approach for controlling PEMFC.
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